4 Estudo Experimental

Os ensaios foram realizados no Laboratório de Estruturas e Materiais do Departamento de Engenharia Civil da Pontifícia Universidade Católica do Rio de Janeiro no período de Junho de 2002 a Outubro de 2003.

A descrição genérica dos ensaios e parâmetros investigados está apresenta a seguir.

4.1. Características do PE-3

O traçado geométrico do duto PE-3 tem a forma em ziguezague (no plano horizontal) indicada nas Figuras 4.1, com ângulo $\alpha = 10^{\circ}$ e comprimento L do trecho reto igual a 12 m. A pressão interna no duto atinge 4,5 MPa. Algumas características físicas e geométricas do protótipo são apresentadas na Tabela 4.1.

Figura 4.1 – Características geométricas do duto PE-3

Parâmetro	Valor
Diâmetro Externo [mm]	457
Espessura de parede [mm]	12.7
Raio de curvatura [m]	17,5
Graduação do aço	API 5L X52
f _y [MPa]	358
Módulo de Elasticidade (E) [MPa]	206000
Coeficiente de Poisson	0,30
Coeficiente de Expansão Térmica [°C ⁻¹]	1,17 x 10 ⁻⁵
Temperatura de operação [°C]	80 (105)

Tabela 4.1 - Características físicas e geométricas do duto PE-3

4.2. Características dos Modelos

Os modelos são constituídos de tubos de aço com diâmetro externo de 76,2 mm e seu traçado geométrico tem a forma em ziguezague (no plano horizontal) com ângulo α assumindo os valores 5°, 10° e 15°. Características físicas e geométricas dos modelos são retiradas de ensaios que serão apresentados nos itens seguintes e um resumo é apresentado na Tabela 4.2.

Tabela 4.2 - Características físicas e geométricas dos modelos

Parâmetro	Valor
Diâmetro Externo [mm]	76,2
Espessura de parede [mm]	2,12
Raio de curvatura [m]	2,92
Graduação do aço	APOLO NBR6591
f _y [MPa]	345
Módulo de Elasticidade (E) [MPa]	210000
Coeficiente de Poisson	0,279
Coeficiente de Expansão Térmica [°C ⁻¹]	1,26 x 10 ⁻⁵
Temperatura de operação [°C]	80 (105)

Cada tubo de aço tem comprimento retilíneo de 6 m, e os modelos ensaiados apresentam comprimentos totais, L_D , de 12m, 16m e 18m, e comprimento do tramo reto, L, de 2m (para L_D de 12m e 16m) e 4m (para L_D de 18m). Para que os comprimentos desejados fossem obtidos, estes tubos foram

soldados de forma que nenhuma seção soldada coincidisse com o centro da curva. Estes pontos de solda estão apresentados na Figura 4.2.

Figura 4.2 – Localização das seções de solda

4.2.1. Características dos Corpos de Prova

As propriedades mecânicas do material do modelo foram obtidas em ensaios de tração e compressão axiais, empregando corpos de prova extraídos do

próprio modelo (tubo com diâmetro externo igual 3"). Foram realizados três ensaios de tração e três de compressão.

O corpo de prova empregado nos ensaios de tração (Figura 4.3) tem comprimento igual a quatro vezes o seu diâmetro ($l = 4\phi = 304,8mm$). O ensaio de compressão foi realizado empregando o corpo de prova mostrado também na Figura 4.3, com mesma seção transversal do tubo do modelo e altura igual a 2 vezes o diâmetro do tubo ($l = 2\phi = 152,4 mm$). As deformações, longitudinais e transversais, foram medidas com extensômetros elétricos de resistência em dois pontos diametralmente opostos.

Figura 4.3 – Corpos de prova empregados no ensaio de tração e compressão axiais

As curvas tensão-deformação obtidas nos ensaios estão mostradas nas Figuras 4.4 e 4.5. Em cada figura estão representadas as curvas correspondentes aos valores médios das deformações axiais e transversais.

Corpo de prova 1

Figura 4.4 - Curvas Tensão-Deformação obtidas no ensaio de tração axial

Figura 4.5 - Curvas Tensão-Deformação obtidas no ensaio de compressão axial

A partir dessas curvas foram obtidos a tensão de escoamento, o módulo de elasticidade e o coeficiente de Poisson, cujos valores são os fornecidos nas Tabelas 4.3 e 4.4.

Os valores do módulo de elasticidade, *E*, representam a inclinação da reta ajustada aos pontos dos trechos retos (elásticos) das curvas. Os valores do coeficiente de Poisson fornecidos são os valores médios para tensões 50 MPa < σ < 250 MPa apresentados nas Figuras 4.6 e 4.7.

Figura 4.6 - Coeficiente de Poisson medido em dois pontos diametralmente opostos no ensaio de tração axial

Figura 4.7 - Coeficiente de Poisson medido em dois pontos diametralmente opostos no ensaio de compressão axial

	$\mathbf{f}_{\mathbf{y}}$	Е		\mathbf{f}_{max}
	(MPa)	(MPa)	ν	(MPa)
Corpo-de-prova 1	343,0	210800	0,279	352,0
Corpo-de-prova 2	345,0	209000	0,277	398,0
Corpo-de-prova 3	347,0	210200	0,282	362,0

Tabela 4.3 – Propriedades mecânicas do material dos modelos sob tração axial

Tabela 4.4 – Propriedades mecânicas do material dos modelos sob compressão axial

	$\mathbf{f}_{\mathbf{y}}$	Е		\mathbf{f}_{max}
	(MPa)	(MPa)	ν	(MPa)
Corpo-de-prova 1	347,0	217800	0,275	358,0
Corpo-de-prova 2	349,0	224400	0,187*	356,0
Corpo-de-prova 3	352,0	228700	0,295	361,0

*Resultado a ser desconsiderado

onde:

 f_y = tensão de escoamento, correspondente a uma deformação residual de 0,2 %;

E = módulo de elasticidade;

v = coeficiente de Poisson;

 f_{max} = tensão máxima observada no ensaio.

4.2.2. Coeficiente de Dilatação Térmica

O coeficiente de dilatação térmica, α_T , foi medido num corpo de prova extraído do próprio tubo do modelo ($\phi = 76,2$ mm), com comprimento de 1984 mm. O corpo de prova foi submetido a seis ciclos de temperatura, com a temperatura variando entre 27°C e 80°C. A variação de temperatura foi conseguida introduzindo-se no interior do corpo de prova água quente e água fria alternadamente. A variação de comprimento do corpo de prova foi medida com um relógio comparador (sensibilidade de 0,01 mm) e a variação da temperatura com um termopar colocado em contato com a parede do corpo de prova.

Os resultados obtidos estão mostrados na Figura 4.8 e na Tabela 4.5.

Temperatura	Leitura	ΔΤ	ΔL	$\alpha_{\rm T} = \Delta L/(\Delta T.1984)$
(°C)	(mm)	(°C)	(mm)	(°C ⁻¹)
28,0	1,51			
79,0	2,72	51,00	1,21	1,196E-05
26,9	1,74	-52,15	-0,98	9,472E-06
80,2	3,06	53,35	1,32	1,247E-05
27,2	1,55	-53,05	-1,51	1,435E-05
80,3	2,97	53,15	1,42	1,347E-05
27,0	1,77	-53,30	-1,20	1,135E-05
80,2	3,18	53,20	1,41	1,336E-05
27,2	1,65	-53,00	-1,53	1,455E-05
80,5	3,02	53,30	1,37	1,296E-05
27,6	1,72	-52,88	-1,30	1,239E-05
80,2	3,06	52,58	1,34	1,285E-05

Tabela 4.5 - Resultados do ensaio de determinação do coeficiente de dilatação térmica

Figura 4.8 – Variação de comprimento em função da variação da temperatura

O valor final a ser considerado é a média dos valores fornecidos na última coluna da tabela, ou seja,

$$\alpha_{\rm T} = 12.6 \times 10^{-6} / {\rm ^{o}C}$$

4.2.3. Execução do Ziguezague

Para o duto adquirir a forma ziguezague foi montado um sistema composto de uma garra metálica (Figura 4.9) em que ao aplicar uma força na sua extremidade ela vai fechando e dobrando o duto num raio de curvatura de 2,92 metros. Para obter a precisão do ângulo desejado foram utilizadas duas hastes de alumínio (Figura 4.10) fixadas fora do trecho a ser encurvado.

Figura 4.9 - Sistema utilizado para a dobra do duto

Figura 4.10 – Hastes de alumínio para determinação do ângulo

Para os ângulos de 5° e 10° não foi observada ovalização na seção duto, o que não ocorreu para o ângulo de 15° onde formou-se um enrugamento na parede do duto (Figura 4.11). A solução encontrada para que não se formasse este enrugamento foi obtida com a colocação de abraçadeiras ao longo da região dobrada, como mostra a Figura 4.12.

Figura 4.11 – Enrugamento no duto

Figura 4.12 – Abraçadeiras na região da dobra

4.3. Características da Bancada de Ensaio

4.3.1. Descrição Geral

A representação esquemática da Bancada de Ensaios está mostrada na Figura 4.13 e uma vista geral na Figura 4.14.

Figura 4.13 – Representação esquemática da bancada de ensaios

A bancada é constituída essencialmente de um circuito fechado dentro do qual circula um fluido, com os seguintes componentes:

- Mangueiras de alta pressão $\phi = 1$ ";
- Tubos metálicos $\phi = 1$ ";
- Duto (modelo) a ser ensaiado;
- Um aquecedor;
- Um resfriador;
- Uma bomba para circulação do fluido no interior do circuito duto/mangueiras;
- Registros para controle do fluxo no aquecedor e resfriador;
- Uma bomba Amsler para aplicação e manutenção da pressão interna;
- Manômetros para controle visual da pressão interna;
- Um transdutor de pressão para medição automática da pressão interna durante os ensaios;
- Termômetros analógicos para controle visual da temperatura nas saídas do aquecedor e do resfriador;
- Dispositivos para fixação do duto (Engastes 1 e 2);
- Isolantes térmicos constituídos de calhas de hidrossilicato de cálcio para reduzir a perda de temperatura ao longo do duto. (Figura 4.14b).

Os valores desejados de L_D (12m, 16m e 18m) são obtidos deslocando-se o engaste 2.

Os modelos foram montados sobre apoios metálicos colocados a cada 2 m ao longo do comprimento do tubo (Figuras 4.14). Uma haste de Teflon foi colada em cada apoio a fim de minimizar o atrito entre o tubo e o apoio. Os apoios são dotados de sapatas rosqueadas que permitem manter o tubo num mesmo nível. O ajuste do nível é feito com um nível a laser.

O aquecimento do duto é obtido por meio do bombeamento de um fluido (mistura de água e óleo solúvel) através de um aquecedor constituído de uma

Estudo Experimental

serpentina de cobre aquecida com queimadores a gás. Para resfriar o modelo, o fluxo é desviado para o resfriador que também é constituído de uma serpentina de cobre imersa num banho de água. Durante o processo de resfriamento, essa água é gradualmente substituída pela água fornecida por um *freezer* (a 2°C, aproximadamente).

4.3.2. Detalhe dos Engastes

Os engastes foram projetados de modo a não permitir deslocamentos nem rotações. O engaste 1 foi projetado de forma a permitir a medição da reação de apoio na direção longitudinal do modelo. As Figuras 4.15, 4.16 e 4.17 mostram detalhes destes engastes.

Figura 4.15 – Vista panorâmica dos engastes

Figura 4.17 – Detalhes do Engaste 2

4.3.3. Detalhe das Peças

A seguir são apresentados os desenhos da vista superior dos engastes 1 e 2 (Figuras 4.18 e 4.22), com os respectivos cortes. A numeração utilizada nas Figuras 4.19, 4.20 e 4.23 para as peças é apresentado em detalhes nas Figuras 4.21 e 4.24.

Figura 4.18 – Vista superior do engaste 1

Figura 4.19 – Cortes A-A e B-B do engaste 1

PEÇAS QUE COMPÕE O ENGASTE 1

Figura 4.21 – Detalhes das chapas utilizadas no engaste 1 (medidas em milímetro)

Figura 4.22 – Vista superior do engaste 2

 $\begin{array}{c} \text{CORTE} \\ \text{(sem escala)} \end{array} A - A \end{array}$

Figura 4.23 – Cortes A-A e B-B do engaste 2

PEÇAS QUE COMPÕE O ENGASTE 2

Figura 4.24 – Detalhes das chapas utilizadas no engaste 2 (medidas em milímetro)

4.3.4. Instrumentação

Neste trabalho foram medidos: deformações específicas, deslocamentos transversais, reação de apoio longitudinal, pressão interna, temperatura e tempo.

E para esta aquisição de dados foi utilizada uma unidade de controle HP3497A (Figura 4.25). A taxa de amostragem do equipamento é de 50 leituras por segundo no modo de 5½ dígitos. O monitoramento dos ensaios foi feito automaticamente com um microcomputador conectado a esse equipamento via uma interface HPIB.

Figura 4.25 – Sistema de aquisição de dados

4.3.4.1. Deformações

As deformações específicas foram medidas com extensômetros elétricos de resistência, tipo Roseta (Figura 4.26), marca Excel, modelo PA-06-250RB-120-L, colados com o adesivo LOCTITE 4210. As deformações foram medidas em várias seções de cada modelo, com três rosetas em cada seção, posicionadas conforme indicado na Figura 4.27.

Figura 4.26 - Roseta instalada

Figura 4.27 – Posicionamento das rosetas nas seções – Observador no Engaste 2 visando o Engaste 1

A direção das deformações medidas em cada roseta está apresentada na Figura 4.28. A direção 1 coincide com o eixo longitudinal do modelo.

Figura 4.28 - Direção das deformações medidas

A tensão principal máxima S_u e a tensão principal mínima S_v , calculadas nos pontos indicados na Figura 4.27, são calculadas em função das deformações ε_1 , ε_2 e ε_3 medidas em cada roseta, e pelas expressões (*Dove & Adams, 1965 [12]*):

$$S_{u} = \frac{E}{2(1-\nu)} \Sigma_{13} + \frac{E}{\sqrt{2}(1+\nu)} \sqrt{\Delta_{12}^{2} + \Delta_{23}^{2}}$$
(4.1)

$$S_{\nu} = \frac{E}{2(1-\nu)} \Sigma_{13} - \frac{E}{\sqrt{2}(1+\nu)} \sqrt{\Delta_{12}^2 + \Delta_{23}^2}$$
(4.2)

onde, $\Sigma_{13} = \varepsilon_1 + \varepsilon_3$ $\Delta_{12} = \varepsilon_1 - \varepsilon_2$ $\Delta_{23} = \varepsilon_2 - \varepsilon_3$

As tensões longitudinais e transversais, calculadas nos pontos indicados na Figura 4.27, são calculadas pelas expressões: (*Timoshenko, 1994 [10]*)

$$\sigma_1 = \frac{E}{1 - v^2} (\varepsilon_1 + v \varepsilon_3) \tag{4.3}$$

$$\sigma_{t} = \frac{E}{1 - v^{2}} (\varepsilon_{3} + v\varepsilon_{1})$$
(4.4)

Onde:

 σ_1 = tensão longitudinal à tubulação;

 σ_t = tensão transversal à tubulação;

E = módulo de elasticidade;

v =coeficiente de Poisson

As tensões longitudinais máxima e mínima na seção transversal são calculadas em função das deformações longitudinais ε_{11} , ε_{12} , ε_{13} medidas nas rosetas instaladas nos pontos indicados na Figura 4.29, empregando as equações (*Rocha et al, 2002 [31]*):

Figura 4.29 – Numeração utilizada para o cálculo das tensões máxima e mínima na seção

$$\sigma_{\max} = \frac{E}{3} \left[(\varepsilon_{11} + \varepsilon_{12} + \varepsilon_{13}) + \sqrt{(2\varepsilon_{11} - \varepsilon_{12} - \varepsilon_{13})^2 + 3(\varepsilon_{12} - \varepsilon_{13})^2} \right]$$
(4.5)

$$\sigma_{\min} = \frac{E}{3} \left[(\epsilon_{11} + \epsilon_{12} + \epsilon_{13}) - \sqrt{(2\epsilon_{11} - \epsilon_{12} - \epsilon_{13})^2 + 3(\epsilon_{12} - \epsilon_{13})^2} \right]$$
(4.6)

$$\theta_{\max} = \arctan \frac{\sqrt{3} \cdot (\varepsilon_{12} - \varepsilon_{13})}{2\varepsilon_{11} - \varepsilon_{12} - \varepsilon_{13}} + \frac{\pi}{2}$$
(4.7)

$$\theta_{\min} = \arctan \frac{\sqrt{3} \cdot (\varepsilon_{12} - \varepsilon_{13})}{2\varepsilon_{11} - \varepsilon_{12} - \varepsilon_{13}} - \frac{\pi}{2}$$
(4.8)

Onde a tensão longitudinal máxima é a tensão longitudinal máxima de tração na seção, e tensão longitudinal mínima é a tensão longitudinal máxima de compressão na seção.

A localização dos pontos onde foram medidas as deformações nos modelos está apresentada na Figura 4.30.

Figura 4.30 – Localização das seções onde foram medidas as deformações (continua)

Figura 4.30 – Localização das seções onde foram medidas as deformações (continuação)

4.3.4.2. Deslocamentos

Os deslocamentos no plano horizontal foram medidos com transdutores de deslocamentos posicionados ao longo do comprimento dos modelos (Figura 4.31).

Figura 4.31 - Transdutor de deslocamento (LVDT)

A localização dos pontos onde foram medidos os deslocamentos está indicada na Figura 4.32.

Figura 4.32 - Localização dos transdutores de deslocamento (LVDT)

4.3.4.3. Reação de Apoio Longitudinal

A reação de apoio (força axial), na direção da linha que liga os dois engastes, foi medida por meio de uma célula de carga posicionada no engaste 1 (Figura 4.33)

Figura 4.33 - Célula de carga no engaste 1

4.3.4.4. Pressão Interna

A pressão interna foi aplicada e mantida durante o ensaio por meio de uma bomba Amsler (Figura 4.34) e monitorada com um transdutor de pressão (Figura 4.35).

Figura 4.34 – Bomba Amsler

Figura 4.35 - Transdutor de pressão

4.3.4.5. Temperatura

A temperatura foi monitorada por meio de três termopares (Figura 4.36) posicionados na seção média e nas seções distantes de 1 m de cada engaste.

Figura 4.36 - Termopar

4.3.5. Reação Lateral do Solo

A força exercida pelo solo sobre o duto (protótipo), agindo no plano horizontal, como resposta ao deslocamento imposto pelo duto, está relacionada com este deslocamento de acordo com o mostrado na Figura 4.37. Esta interação solo-duto foi simulada em duas situações:

- duto com 50% (meio diâmetro) de enterramento: nesta situação o valor da força máxima resistida pelo solo indicado na Figura 4.37 é de 20 kg/m ao longo do modelo reduzido;
- duto com 1 m de enterramento: nesta situação o valor da força máxima resistida pelo solo indicado na Figura 4.37 é de 88 kg/m ao longo do modelo reduzido.

Figura 4.37 – Representação esquemática da relação força-deslocamento para a reação lateral do solo

Estes valores são apresentados no trabalho realizado por *Costa et al* [29], onde foi medida a reação lateral do solo para diferentes profundidades de enterramento.

Ao longo do texto quando tiver *modelo com 50% de enterramento* ou *modelo com 1 metro de enterramento*, significa que o modelo está simulando 50% ou 1 metro de enterramento no protótipo.

Os dispositivos empregados nos ensaios dos modelos, para simular a reação lateral do solo, estão mostrados nas Figuras 4.38 e 4.39. Esses dispositivos foram posicionados a cada metro ao longo do modelo. O dispositivo mostrado na Figura 4.38, correspondente à situação de 50% de enterramento, onde no instante em que o modelo tenta se deslocar lateralmente a força de 20 kg exercida pelo peso é transmitida para o modelo pelo sistema de barras, correntes e roldanas mostrado nas figuras.

Figura 4.38 – Dispositivo para simular a força lateral de 20 kg/m

No dispositivo da Figura 4.39 a força exercida pelo mesmo peso de 20 kg é multiplicada pelo braço de alavanca proporcionado pelo dispositivo fixado na roldana, de modo a se obter a força de 88 kg. O detalhe da ligação da barra horizontal com o modelo, através da qual a força é transmitida ao modelo, está mostrado na Figura 4.40.

Figura 4.39 – Dispositivo para simular a força lateral de 88 kg/m

Para validação do sistema utilizado foram testados três dispositivos escolhidos aleatoriamente tanto para a simulação da condição de 50% de enterramento quanto para 1 metro de enterramento. Suas respectivas curvas de calibração são fornecidas nas Figuras 4.41 e 4.42.

Figura 4.41 – Curvas de calibração dos dispositivos que simulam a condição de 50% de enterramento – Três dispositivos escolhidos aleatoriamente.

Figura 4.42 – Curvas de calibração dos dispositivos que simulam a condição de 1 metro de enterramento – Três dispositivos escolhidos aleatoriamente.

A localização dos pontos onde foram posicionados os dispositivos que representam a reação do solo estão indicados na Figura 4.43.

Figura 4.43 - Localização dos dispositivos que representam os apoios não-uniformes

4.4. Programa de Ensaio

O programa de ensaios foi dividido em duas fases. Na Fase 1, os modelos representam o protótipo na configuração em que vem sendo empregados, ou seja, com ângulo de dobramento de 10° e comprimento do trecho reto igual a 2 m $(L_m = L_p / s_l = 12 / 6 = 2 \text{ m})$. Na Fase 2, foi feito um estudo paramétrico variandose o ângulo de dobramento e o comprimento dos trechos retos.

Os ensaios previstos para a Fase 1 são os relacionados na Tabela 4.6 e os da Fase 2 nas Tabelas 4.7 e 4.8. A nomenclatura da coluna dos modelos é a seguinte: "L" representa o comprimento do modelo; "A" representa o ângulo de ziguezague; "IH" representa imperfeição horizontal; "S20" representa 50% de enterramento (F = 20 kg/m); e "S90" 1 metro de enterramento (F = 88 kg/m).

Ensaio	Modelo	Reação lateral do solo	Imperfeição horizontal (cm)
1	L16A10	Livre	0
2	L16A10IH	Livre	10,7
3	L16A10S20a	50% de enterramento	0
4	L16A10S20b	50% de enterramento, mas 8 metros centrais livres (um ziguezague completo livre)	0
5	L16A10S90a	1 metro de enterramento	0
6	L16A10S90b	1 metro de enterramento, mas 8 metros centrais livres (um ziguezague completo livre)	0
7	L16A0	Duto reto - sem apoio	0
8	L16A0S90a	Duto reto – com 1 metro de enterramento	0

Tabela 4.6 – Modelos da FASE 1 - L_D = 16 m, L =2 m, α = 10°

Ensaio	Modelo	α	Reação lateral do solo	Imp. horiz. (cm)
1	L12A5	5	Livre	0
2	L12A5S90a	5	1 m de enterramento	0
3	L12A5S90b	5	1 m de enterramento, 4 m centrais livres	0
4	L12A5S90IH	5	1 m de enterramento	8,0
5	L12A10	10	Livre	0
6	L12A10S90a	10	1 m de enterramento	0
7	L12A10S90b	10	1 m de enterramento, 4 m centrais livres	0
8	L12A10S90IH	10	1 m de enterramento	8,0
	·		·	
9	L12A15	15	Livre	0
10	L12A15S90a	15	1 m de enterramento	0
11	L12A15S90b	15	1 m de enterramento, 4 m centrais livres	0
12	L12A15S90IH	15	1 m de enterramento	8,0

Tabela 4.7 – Modelos da FASE 2 - L_D = 12 m, L = 2 m

Tabela 4.8 – Modelos da FASE 2 - L_{D} = 18 m ; $\,$ L = 4 m

Ensaio	Modelo	α	Reação lateral do solo	Imp. horiz.
1	L18A5	5	Livre	0
2	L18A5S90a	5	1 m de enterramento	0
3	L18A5S90b	5	1 m de enterramento, 6 m centrais livres	0
4	L18A5S90IH	5	1 m de enterramento	12,0
5	L18A10	10	Livre	0
6	L18A10S90a	10	1 m de enterramento	0
7	L18A10S90b	10	1 m de enterramento, 6 m centrais livres	0
8	L18A10S90IH	10	1 m de enterramento	12,0
9	L18A15	15	Livre	0
10	L18A15S90a	15	1 m de enterramento	0
11	L18A15S90b	15	1 m de enterramento, 6 m centrais livres	0
12	L18A15S90IH	15	1 m de enterramento	12,0

4.4.1. Procedimento de Ensaio

Antes de se iniciar o ensaio, o duto era alinhado com um nível a laser posicionado no centro do engaste 1 mirando um anteparo no centro do engaste 2. Com o laser na posição correta, uma haste vertical com base magnética era colocada no centro do modelo, conforme mostra Figura 4.44 e o duto era então posicionado de tal forma a garantir que o centro do modelo e suas extremidades estivessem alinhados.

O procedimento geral de ensaio é descrito abaixo e apresentado nas Figuras 4.45 e 4.46.

- Início do ensaio com o modelo sob temperatura de 20°C e pressão interna igual a zero;
- 2 Aplicação da imperfeição horizontal (deslocamento de L_D / 150 imposto na seção média do modelo), com o modelo sob temperatura de 20°C e pressão interna igual a zero; (*Realizado somente para os ensaios com imperfeição horizontal*)
- 3 Aplicação da pressão interna de 4,5 MPa, com temperatura constante e igual 20°C;
- 4 Elevação da temperatura, de 20°C para 105°C, com pressão interna constante e igual 4,5 MPa;
- 5 Diminuição da temperatura de 105°C para 20°C, com pressão interna constante e igual 4,5 MPa;
- 6 Diminuição da pressão interna, de 4,5 MPa para zero, com temperatura constante e igual 20°C;
- 7 Retirada da imperfeição, reduzindo-a para zero, com o modelo sob temperatura de 20°C e pressão interna igual a zero; (*Realizado somente para* os ensaios com imperfeição horizontal)
- 8 Término do ensaio, sob temperatura de 20°C.

O tempo de duração dos ensaios variou de 2:30 hs à 3:30 hs cada.

Figura 4.45 – Curva geral da variação de temperatura em função do tempo

Figura 4.46 – Curva geral da variação da pressão em função do tempo

4.5. Traçado Geométrico dos Modelos

Os traçados geométricos dos modelos como projetados e os traçados reais depois de construídos e montados na bancada de ensaios, são apresentados a seguir.

4.5.1. Modelos L12A5, L12A5S90a, L12A5S90b, L12A5S90IH

Figura 4.47 – Vista superior do modelo

Figura 4.48 – Coordenadas dos modelos L12A5, L12A5S90a, L12A5S90b, L12A5S90IH como construídos

Figura 4.49 – Comparação entre os traçados projetado e real (como construído) para os modelos L12A5, L12A5S90a, L12A5S90b, L12A5S90IH

Tabela 4.9 –	Traçados	projetado	e real	dos	modelos	L12A5,	L12A5S90a,	L12A5S90b,
L12A5S90IH.	Distâncias	medidas	a partir	do e	engaste 2			

Traçad	o projetado	Traçado real		
Distância	Ordenadas	Distância	Ordenadas	
(m)	(mm)	(m)	(mm)	
0	0	0	0,00	
1,009	44,06	1,009	40,40	
1,998	82,22	2,008	71,40	
2,997	44,06	3,007	26,40	
3,996	0	4,001	-22,10	
4,995	-44,06	4,995	-67,10	
5,994	-82,22	5,994	-104,60	
6,993	-44,06	6,993	-63,10	
7,992	0	7,992	-9,10	
8,991	44,06	8,991	44,90	
9,990	82,22	9,990	81,90	
10,989	44,06	10,989	41,90	
11,988	0	11,988	0,00	

4.5.2. Modelos L12A10, L12A10S90a, L12A10S90b, L12A10S90IH

Figura 4.50 – Vista superior do modelo

Figura 4.52 – Comparação entre os traçados projetado e real (como construído) para os modelos L12A10, L12A10S90a, L12A10S90b, L12A10S90IH

Traçad	o projetado	Traçad	o real
Distância	Ordenadas	Distância	Ordenadas
(m)	(mm)	(m)	(mm)
0	0	0	0,00
1,742	152,52	0,996	79,96
1,992	163,42	1,992	158,22
2,242	152,52	2,988	86,07
5,727	-152,52	3,985	-0,01
5,977	-163,42	4,981	-85,28
6,227	-152,52	5,977	-167,63
9,712	152,52	6,973	-91,67
9,962	163,42	7,969	-8,84
10,212	152,52	8,966	82,95
11,955	0	9,962	159,76
		10,958	87,68
		11,955	0,00

Tabela 4.10 – Traçados projetado e real dos modelos L12A10, L12A10S90a, L12A10S90b, L12A10S90IH. Distâncias medidas a partir do engaste 2.

Figura 4.53 – Vista superior do modelo

Figura 4.54 – Coordenadas dos modelos L12A15, L12A15S90a, L12A15S90b, L12A15S90IH como construídos

Figura 4.55 – Comparação entre os traçados projetado e real (como construído) para os modelos L12A15, L12A15S90a, L12A15S90b, L12A15S90IH

Tabela 4.11 – Traçados projetado e real dos modelos L12A15, L12A15S90a, L12A15S90b, L12A15S90IH. Distâncias medidas a partir do engaste 2.

Traçad	o projetado	Traçad	o real
Distância	Ordenadas	Distância	Ordenadas
(m)	(mm)	(m)	(mm)
0	0	0	0,00
1,735	228,4	1,001	138,10
1,985	244,8	1,993	244,40
2,235	228,4	2,984	109,90
5,699	-228,4	3,971	-23,60
5,949	-244,8	4,957	-157,60
6,199	-228,4	5,949	-268,60
9,662	228,4	6,94	-151,50
9,914	244,8	7,931	0,00
10,162	228,4	8,923	142,90
11,897	0	9,914	253,90
		10,906	132,90
		11,897	0,00

4.5.4. Modelos L16A10, L16A10S20a, L16A10S20b, L16A10S90a, L16A10S90b e L16A10IH

Figura 4.56 – Vista superior do modelo

Figura 4.57 – Coordenadas dos modelos L16A10, L16A10S20a, L16A10S20b, L16A10S90a, L16A10S90b e L16A10IH como construídos

Figura 4.58 – Comparação entre os traçados projetado e real para os modelos L16A10, L16A10S20a, L16A10S20b, L16A10S90a, L16A10S90b e L16A10IH

Tabela 4.12 – Traçados projetado e real dos modelos L16A10, L16A10S20a, L16A10S20b, L16A10S90a, L16A10S90b e L16A10IH. Distâncias medidas a partir do engaste 2.

Traçado projetado		Traçado real	
Distância	Ordenadas	Distância	Ordenadas
(m)	(mm)	(m)	(mm)
0	0	0	0
0,996	-86,8	0,996	-81,7
1,992	-163,4	1,992	-156,7
2,988	-86,8	2,988	-81,7
3,985	0	3,985	2,8
4,981	86,8	4,981	82,3
5,977	163,4	5,977	159,8
6,973	86,8	6,973	86,8
7,970	0	7,970	0
8,966	-86,8	8,966	-85,7
9,962	-163,4	9,962	-168,2
10,958	-86,8	10,958	-92,2
11,954	0	11,954	-9,2
12,951	86,8	12,951	82,8
13,947	163,4	13,947	159,8
14,943	86,8	14,943	87,8
15,940	0	15,940	0

4.5.5. Modelos L18A5, L18A5S90a, L18A5S90b, L18A5S90IH

Figura 4.60 – Coordenadas dos modelos L18A5, L18A5S90a, L18A5S90b, L18A5S90IH como construídos

Figura 4.61 – Comparação entre os traçados projetado e real (como construído) para os modelos L18A5, L18A5S90a, L18A5S90b, L18A5S90IH

Tabela 4.13 – Traçados projetado e real dos modelos L18A5, L18A5S90a, L18A5S90b, L18A5S90IH. Distâncias medidas a partir do engaste 2.

Traçado projetado		Traçado real	
Distância	Ordenadas	Distância	Ordenadas
(m)	(mm)	(m)	(mm)
0	0	0	0,00
2,747	120	0,999	46,40
2,997	125,4	1,998	94,90
3,247	120	2,997	137,40
8,741	-120	3,996	101,90
8,991	-125,4	4,995	54,90
9,241	-120	5,994	5,40
14,735	120	6,993	-47,10
14,985	125,4	7,992	-91,10
15,235	120	8,991	-129,60
17,982	0	9,99	-86,10
		10,989	-42,60
		11,988	2,90
		12,987	45,90
		13,986	89,40
		14,985	125,90
		15,984	82,40
		16,983	41,90
		17,982	0,00

4.5.6. Modelos L18A10, L18A10S90a, L18A10S90b, L18A10S90IH

Figura 4.62 – Vista superior do modelo

Figura 4.63 – Coordenadas dos modelos L18A10, L18A10S90a, L18A10S90b, L18A10S90IH como construídos

Figura 4.64 – Comparação entre os traçados projetado e real (como construído) para os modelos L18A10, L18A10S90a, L18A10S90b, L18A10S90IH

Traçad	Traçado projetado		Traçado real	
Distância	Ordenadas	Distância	Ordenadas	
(m)	(mm)	(m)	(mm)	
0	0	0	0,00	
2,739	239,7	0,996	85,90	
2,989	250,6	1,992	175,40	
3,239	239,7	2,989	254,40	
8,691	-239,7	3,985	184,90	
8,966	-250,6	4,981	88,40	
9,216	-239,7	5,977	2,90	
14,693	239,7	6,973	-86,60	
14,943	250,6	7,97	-174,60	
15,193	239,7	8,966	-251,10	
17,932	0	9,962	-173,10	
		10,958	-87,10	
		11,954	-2,10	
		12,95	85,90	
		13,947	172,90	
		14,943	239,40	
		15,939	159,90	
		16,935	80,40	
		17,932	0,00	

Tabela 4.14 – Traçados projetado e real dos modelos L18A10, L18A10S90a, L18A10S90b, L18A10S90IH. Distâncias medidas a partir do engaste 2.

Figura 4.66 – Coordenadas dos modelos L18A15, L18A15S90a, L18A15S90b, L18A15S90IH como construídos

Figura 4.67 – Comparação entre os traçados projetado e real (como construído) para os modelos L18A15, L18A15S90a, L18A15S90b, L18A15S90IH

Tabela 4.15 – Traçados projetado e real dos modelos L18A15, L18A15S90a, L18A15S90b, L18A15S90IH. Distâncias medidas a partir do engaste 2.

Traçado projetado		Traçado real	
Distância	Ordenadas	Distância	Ordenadas
(m)	(mm)	(m)	(mm)
0	0	0	0,00
2,724	358,9	0,991	140,90
2,974	375,3	1,983	275,90
3,224	358,9	2,974	389,90
8,673	-358,9	3,966	278,90
8,923	-375,3	4,957	137,90
9,173	-358,9	5,949	-0,60
14,622	358,9	6,94	-131,10
14,872	375,3	7,932	-277,10
15,122	358,9	8,923	-389,10
17,846	0	9,914	-263,10
		10,906	-129,10
		11,897	6,90
		12,889	143,90
		13,88	279,90
		14,872	389,90
		15,863	262,90
		16,855	132,90
		17,846	0,00

4.5.8. Modelos L16A0 e L16A0S90a

Figura 4.69 – Comparação entre os traçados projetado e real (como construído) para os modelos L16A0, L16A0S90a

Distância a partir do engaste 2 (m)

Traçado projetado		Traçado real	
Distância	Ordenadas	Distância	Ordenadas
(m)	(mm)	(m)	(mm)
0	0	0	0,00
1	0	1	2,60
2	0	2	2,60
3	0	3	2,60
4	0	4	2,60
5	0	5	2,60
6	0	6	3,10
7	0	7	3,10
8	0	8	2,60
9	0	9	1,10
10	0	10	0,10
11	0	11	-3,40
12	0	12	-4,40
13	0	13	-4,40
14	0	14	-3,90
15	0	15	-2,40
16	0	16	0,00

Tabela 4.16 – Traçados projetado e real dos modelos L16A0, L16A0S90a. Distâncias medidas a partir do engaste 2.